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A new cellular-automaton model for fluid dynamics is introduced. Unlike the 
conventional FHP-type models, the model uses easily implementable, deter- 
ministic pair interaction rules which work on arbitrary-dimensional orthogonal 
lattices. The statistical and hydrodynamic theory of the model is developed, and 
the Navier-Stokes-like hydrodynamic equations that describe the macroscopic 
behavior of the model are derived. It turns out that the unwanted anisotropic 
convection behavior can be eliminated in the incompressible limit by suitable 
choice of the mass density. An explicit expression for the viscosity tensor is 
calculated from a Boltzmann-type approximation. Unfortunately, the viscosity 
turns out to be anisotropic, which is a drawback as against the conventional 
FHP and FCHC models. Nevertheless, the new model could become interesting 
for fluid dynamic problems with additional variables (e.g., free surfaces), 
especially in two dimensions, since its simple rules could relatively easily be 
extended for such cases. 

KEY WORDS:  

1. INTRODUCTION 

A "cellular automaton"  (CA) is a set of regularly arranged elements, called 
"cells," with a discrete dynamics generated by an iteration rule giving the 
state of a cell at time t + 1 as a function of the state of a few neighboring 
cells at time t, where the state of a cell can assume only a small finite num- 
ber of different values. CAs can serve as maximally discretized computer  
models for various types of collective phenomena. It  is even possible to 
simulate fluid dynamics by suitably defined CAs, as has recently been 
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demonstrated by Frisch et al. ~1) (FHP). The CA model of FHP represents 
a gas consisting of particles that move around and collide with each other 
on certain discrete trajectories on a two-dimensional, hexagonally sym- 
metric lattice, according to certain simple rules, which conserve the number 
of particles and their total momentum. Although the microscopic motion of 
the FHP particles is unrealistically simplified, the macroscopically averaged 
local densities of mass and momentum of the FHP gas can be shown to 
obey a set of partial differential equations which, under certain asymptotic 
conditions, are dynamically eequivalent to the incompressible Navier- 
Stokes equations, ~2) 

V" u = O, (Ot -~- u ,  V)u  -]- V~ = v V2u (1) 

This means that the FHP model can serve as a tool for numerical simula- 
tions of fluid dynamics(3-8); it thus provides an interesting alternative to the 
usual finite-difference and finite-element methods. By suitable modifications 
of various kinds, the application range of the FHP model can be extended 
from "simple" Navier-Stokes flow to more complex hydrodynamic 
problems, such as passive scalar transport, surface tension, or even 
magnetohydrodynamics.(9 i8) 

Why does the FHP model need a hexagonal lattice? Actually, the 
FHP model arose as a modification of an earlier, very simple model with 
a square lattice, introduced by Hardy et al. (19) (HPP). The HPP lattice gas 
behaves in many respects like a physical fluid, but in contrast to the FHP 
model, it cannot simulate the Navier Stokes equations quantitatively 
because of the anisotropic structure of the convection and viscosity term 
in the hydrodynamic equations of the HPP gas. The HPP gas is 
hydrodynamically equivalent to a physical gas or fluid only in some 
relatively uninteresting hydrodynamic limiting cases in which these terms 
are unimportant, such as undamped sound waves or linear potential flow. 
The FHP model overcomes this anisotropy problem in a very elegant way: 
Roughly speaking, it can be shown that the hexagonal symmetry guaran- 
tees the isotropy of all tensors up to and including fourth order in the 
hydrodynamic equations of the lattice gas, (2) so that in particular the 
convection and viscosity terms, whose coefficients are fourth-order tensors, 
automatically become isotropic. A quadratic or cubic symmetry (such as in 
the HPP model), however, implies isotropy of tensors up to third order 
only. 

Its hexagonal structure restricts the FHP model to two dimensions. 
However, d'Humi~res et aL (2~ have discovered that one can construct in 
f o u r  dimensions a CA model with a face-centered hypercubic symmetry, 
which, like the hexagonal symmetry in 2D, guarantees the isotropy of 
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tensors up to fourth order. By projecting this so-called FCHC ("face- 
centered hypercubic') model down to three dimensions, one obtains a 
CA with a cubic lattice that can simulate incompressible Navier-Stokes 
flow in 3D. The FCHC model can also be projected to two dimensions, 
which leads to a 2D Navier-Stokes-simulating CA with a square lattice. 

An unsatisfactory feature of the FCHC model is the large number of 
different possible collision configurations, which complicates the definition 
of suitable collision rules and the formulation of an efficient algorithm 
without resorting to huge lookup tables. (22 24~ For the modeling of pure 
Navier-Stokes flow, these technical problems can be overcome and the 
FCHC performs quite well. However, the unhandiness of its rules makes it 
extremely difficult to extend the FCHC model for fluid dynamic problems 
with additional variables, such as magnetohydrodynamics or surface 
tension. (25) 

Now, the FCHC method is not the only possible way to obtain 
Navier-Stokes-simulating CAs with square or cubic lattices; the desired 
isotropy properties can also be established by various other tricks. (17"2~ 
However, in 3D there seems to be no serious alternative to the FCHC 
model (see ref. 20, where an alternative 3D model is considered). 

These considerations motivated me to devise the new model (29) which 
I discuss here. Its special structure, which differs slightly from the conven- 
tional models (such as the FHP or the FCHC), makes it possible to use 
relatively simple rules on a simple (square or cubic) lattice with in principle 
arbitrary space dimension d (e.g., d =  2 or d =  3). The rules are composed 
of elementary deterministic cell pair interactions, which are easy to imple- 
ment and could be easily modified for more complex cases with additional 
variables. 

The purpose of this paper is to present the definition and statistical 
theory of the model. The development of the theory follows standard 
methods (2~ and leads to a characterization of the macroscopic near-equi- 
librium behavior by equations of state and hydrodynamic equations which 
characterize the dynamics of the local macroscopic order parameters. It 
turns out that the Navier-Stokes-like hydrodynamics of our model is 
anisotropic, which is not surprising, as there are no symmetries guarantee- 
ing the isotropy of fourth-order tensors. The first approximation of the 
hydrodynamic equations, which does not include friction effects and can be 
derived relatively easily from the equilibrium distribution; shows that the 
anisotropy of the nonlinear convection term ( ~  u Vu) can be eliminated by 
a suitable choice of the mean density in the incompressible limit. We also 
tackle the slightly less trivial second approximation in order to compute 
the viscosity, which unfortunately turns out to be anisotropic. 

The anisotropy of the viscosity is clearly a drawback of the model in 
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comparison to the conventional models, i.e., FHP  for 2D, and FCHC for 
3D, particularly in view of the considerable progress which has been made 
in the technical optimization of the latter models; e.g., in refs. 26 and 27 an 
efficient implementation of the FHP model is presented; in ref. 28, the 
FCHC model is used to investigate 3D flow through porous media, etc. 
(further material in this direction can be found in the January 1991 issue 
of Phys ica  D, Vol. 47). Nevertheless, I think the new model remains 
interesting, maybe not for the simulation of pure  Navier-Stokes flow, 
where the conventional models can do the job better, but possibly as a 
starting point for future models for 3D fluid dynamic situations in 
which additional variables appear, such as the above-mentioned free 
surfaces, magnetohydrodynamics, and the like. The construction of corre- 
sponding extensions of the FCHC model is extremely difficult because of its 
complicated rules. Here, the simple, easy-to-extend rules of my model could 
open new perspectives. 

The paper is organized as follows. Sections 2 and 3 are concerned with 
the detailed definition of the model and its rules. In Section 4, the statistical 
equilibrium is discussed with the help of the Gibbs formalism. In Section 5, 
we begin the derivation of hydrodynamic equations by means of a 
Chapman-Enskog expansion, and obtain explicitly the first (frictionless) 
approximation. In Section 6, various hydrodynamic limiting cases are 
discussed. In Sections 7 and 8, we discuss the second approximation and 
calculate explicitly the friction (diffusion) coefficients from a Boltzmann- 
type approximation. In Section 9, the anisotropy of the viscosity tensor is 
demonstrated in a simple example. In Section 10, we take a brief look at 
what computer experiments with the new model have produced so far. 

2. THE MODEL 

The basic ideas for the construction of our CA model are the same as 
those used in the classical models, i.e., the HPP, FHP, FCHC, and similar 
models: One imagines a gas consisting of individual particles, flying around 
in a d-dimensional space ( d = 2  or d = 3 ,  usually). In our model, d is 
arbitrary. The velocity v of a model particle can take only a finite number 
b of possible discrete values: 

v z V =  {Vl ..... Vb} (2) 

e.g., the velocity set V used in the HPP and FHP models is shown in 
Figs. 1 and 2, respectively. In our model, V consists of the b = 2 a possible 
different vectors v = (vl ..... va) with components 

v j ~ { + l }  (3) 
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Fig. 1. Latt ice and  discrete velocities v a (a = 1, 2, 3, 4) in the H P P  model .  

(Fig. 3). A particle can change its velocity only in collisions with other 
particles. Collisions occur only at the special instants of time 

t e Z - {  .... - 1 , 0 , 1 , 2 , . . }  (4) 

and at certain special locations, 

x~X( t )  (5) 

where X(t) is a suitable set of lattice points, which in our model is defined 
by x = (Xl,..., x~) with 

xs~Z e if t e Z e - { . . . , - 2 , 0 , 2 , 4 , . . . }  (6) 

x jeZo if t eZo  = {..., - 1 ,  1, 3, 5,...} (7) 

See Fig. 3 (cf. Figs. 1 and 2 for the HPP and FHP models). All particles 
are assumed to be located at lattice points x e X(t) whenever t e Z. The 
collisions at t e Z  and xeX( t )  are accomplished by a suitable rule for 

�9 �9 �9 �9 

�9 O q  �9 ~ 0  �9 

�9 �9 �9 �9 

Fig. 2. H e x a g o n a l  lattice and  discrete velocities v~ (a = 1,..., 6) of the F H P  model.  
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Fig. 3. Lattice structure of our model (in two dimensions). Particle positions at even and 
odd times are shown as white and black circles, respectively; the arrows indicate the possible 
particle velocities. 

transforming a local configuration of incoming particles into a correspond- 
ing configuration of outgoing particles. The collision rule is usually chosen 
such that the total mass (number of particles) and the total momentum of 
a local configuration do not change in the collision. These collision 
invariants are essential for the model to produce on a macroscopic scale 
the desired Navier-Stokes-like hydrodynamic behavior. One could also 
introduce a CA analog of energy conservation (as in ref. 17), but normally 
this is not done, since for most interesting hydrodynamic limiting cases, 
such as incompressible flow, energy conservation is irrelevant, so an addi- 
tional modeling of energy conservation would only further complicate the 
CA model unnecessarily. 

In order to formulate the dynamics of such a model in CA form, one 
views each of the possible discrete one-particle phase space points (x, v) as 
a "cell," whose state can be characterized by its occupation number 
n(t, x, v). To keep the model as simple as possible, one additionally 
postulates an "exclusion principle" which prevents that two particles 
simultaneously occupy the same cell, so that 

n(t, x, v) {0, 1} (8) 

In the conventional models, the occupation number specifies the state of a 
cell completely, and in particular the momentum re(t, x, v) of a cell is 
defined by the usual formula "mass times velocity," i.e., re(t, x, v ) =  
vn(t, x, v). In our model, however, the momentum is defined differently: 
We postulate that each particle carries with it a vector-valued quantity 
n = (nl ..... nd), which we call "absolute momentum," with components 

njs  {0, 1} (9) 
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and we define the "momentum" m of a particle with velocity v and absolute 
momentum n componentwise by 

mj := njvj (lO) 

In other words, momentum m and velocity v agree only in the signs of their 
components, while the magnitudes of the momentum components, which 
according to (10), (9), and (3) are 

Imjl =nj~  {0, 1) (11) 

play the role of additional Boolean degrees of freedom [the equality sign 
in (11) also explains the name "absolute momentum" for n]. With our 
momentum definition, the characterization of the state of a cell merely by 
its occupation number n(t, x, v) would be incomplete; rather, we have to 
speficy for each cell 1 + d Boolean quantities 

ns(t,x,v)~{O, 1} ( J =  0, 1,..., d) (12) 

where n o - n  is the number of particles in the cell, and (nl,..., nd)= n is the 
total amount of absolute momentum contained in the cell (see Fig. 4). Note 
that these quantities cannot take arbitrary Boolean values independently of 
each other: Since empty cells ( n o - n = 0 )  always have zero absolute 
momentum (n = 0), there is the restriction 

ni(t, x, v)~< n0(t, x, v) (13) 

oY 
Fig. 4. Local structure of our model. The left picture shows the local cells (indicated by the 
small squares) with different velocities (the arrows) at a lattice point (the dot in the middle); 
the right picture shows one of the cells in more detail. Each circle corresponds to a bit in the 
computer. The bit n o indicates the presence or absence of a particle in a cell, while the bits 
n I and n 2 indicate the presence or absence of a momentum component in the x 1 and x 2 
directions, respectively. 
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For brevity, it is from now on always implicitly assumed that 

j,k,...~{1,...,d} (14) 

J, K,... ~ {0, 1 ..... d} (15) 

whenever these letters occur as indices, and the notation 

a : =  ( a s , . . . ,  ad) 
(16) 

a ,  := (a0, a ) =  (a0, al,..., ad) 

is used for d-tuples and (1 + d)-tuples of quantities as, where a is called a 
"vector" and a ,  a "hypervector," Thus, the state of a cell is characterized 
by the hypervector 

n,( t ,  x, v) e S  (17) 

where the set of admissible values is 

S =  { n , : n , ~  {0, 1 } , n j ~ n o )  (18) 

We define the "hypermomentum" m ,  of a cell by 

mj(t, x, v) := vjnj(t, x, v) (19) 

where vl,..., va are the ordinary components of the cell velocity v and 

v 0 := 1 (20) 

The vectorial part m of the hypermomentum m,  = (mo, m) then is the 
momentum of the cell in the sense of our definition, while the scalar part 
mo = no specifies the mass of the cell. 

The dynamics of the CA model now has to be specified as an iteration 
rule for transforming the state at time t into the state at time t + 1. Each 
step of the iteration consists of two substeps: the collision at time t and the 
subsequent free motion during the time from t to t + 1. The free motion 
leads to the following "shift rule" for transforming the state immediately 
after the collision at time t into the state immediately before the next 
collision at time t + 1: 

ns(t+ 1, x + v, v)=n ' j ( t ,  x, v) (21) 

The collision transitions 

nj(t, x, v) ~ n)(t, x, v) (22) 
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are generated by a local rule of the form 

n',s= f,s(n**) (23) 

where 

n,j(t, x) - nj(t, x, v) (24) 

and 

n** = (n,j: V(v, J)) (25) 

i.e., n** represents a local collision configuration. We require the "collision 
function" f , j  in (23) to have two essential properties: First, it has to 
preserve the total hypermomentum (i.e., both mass and momentum) of the 
cells that take part in a collision: 

~ V s n ; s = ~ v j n v j  (26) 
v w 

This ensures that the hypermomentum density becomes a local macro- 
scopically relevant, i.e., hydrodynamic, quantity. The second important 
property is that 

r f**: n** ~-+ n** is one-to-one (27) 

i.e., we require that the local state n** before the collision can always be 
uniquely reconstructed from knowledge of the state n** after the collision. 
As will be seen later, this "reversibility" property plays a similar role 
as does the Hamiltonian form of the equations of motion in classical 
mechanics: it allows us to apply the Gibbs formalism, which yields impor- 
tant information about the statistical equilibrium state. 

3. THE COLLISION M E C H A N I S M  

The simplest possible collision rule consistent with our requirements of 
hypermomentum conservation and reversibility would be, of course, the 
identity transformation://~vJ =/TvJ. However, this would give rise to a whole 
bunch of unwanted additional conservation laws and therefore is out of the 
question. Instead, a "good" rule, loosely stated, should try to redistribute 
the hypermomentum among the local cells as well as possible. 

An easily implementable algorithm that deals systematically with 
the huge number of different possible collision configurations can be 
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constructed as follows. We accomplish the local transformation nvs ~ n',s 
in d successive steps: 

nvj = n~j --+ n 2J --+ . ..d+x , (28) 
�9 , . ~ H v j  ~ H v j  

i.e., in the first step, the original state just before the collision, n v j -n ~ j ,  
2 which in turn then gets gets transformed into an intermediate state, nvj, 

transformed into 3 d +  1 __ , is  nv:, etc., until after d steps the final state n,s =n~j  
reached, whereupon by definition the collision process is finished and the 
particles start flying apart in free motion (remember that the whole colli- 
sion process occurs "infinitely fast" in the model, although of course the 
actual performance of the transformations will consume valuable computer 

k+ time). At the k th  step (nk, j ~ n , j  1), we let each velocity v interact with a 
single partner velocity R~v whose value differs from v only in that the sign 
of its k th  component is reversed: 

Thus, 

Rlv : = ( - v ~ ,  +v2 ..... +vd) 

R2v : = ( + v l ,  - v 2  ..... +v,t) 

Rdv := ( + v l ,  +v2 ..... --Vd) 

(29) 

(Rk%- = ( -- 1 )a,k vj (30) 

Figure 5 illustrates the so-defined interactionpairs.  Our pairs transforma- 
tion rule for the kth step has the form 

n k + l  k k k vJ = f J ( n v , ,  n(gk~), ) (31) 

k=l k=2 

/ 
/ /  / 

/ 

Fig. 5. Local  pairs  of in teract ing cells in subsequen t  collision steps (each square  represents  
a cell; their  velocity vectors  are indicated by the arrows).  
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where 

f k , =  k (fo,..., f~): S x S -~ S (32) 

with S given by (18). We define 
explicitly as follows: 

fo(n , ,  n, ) =  

n o  

f k (n , ,  n + ) = 
tl 0 

f y ( n , , n g ) = f n +  

k.n] 

+ ~ S  f~ (n , ,  n + ) for arbitrary n ,  ES and n ,  

+ = 0  if n o = 0 a n d n o  ~ = l a n d n  k 

if n ~ - = 0 a n d n o = l a n d n ~ = 0  

otherwise 

if no=n~ =1 andnk=n~-  = 0  

if n o = n ~ = l a n d n ~ = n ~ - = l  

otherwise 

no = 0 and n~ = 1 and n~- = 0 

if ~ n ~ - = 0 a n d n  o = l a n d n  k = 0  
! 

[no = n~- = 1 

otherwise 

(33) 

k respectively for j:/:k; here nj  and nj + are abbreviations for n~j and n(Rkv)j, 
[cf. (31)3. 

The transformation of an interacting cell pair (v, Rkv) according to 
(31) can then be characterized by the mapping 

+ k + +), f  , ( n , , n , ) )  (34) Fk: S xS- -*Sx  S, (n, ,n , )~--~(fk , (n , ,n ,  

By inspecting Fig. 6, which illustrates Fk, one recognizes the following 
important properties: 

k + laask fk( ,+ n , ) = n j + (  1) aJk + (35) f s ( n , , n , ) + ( - - ~ ,  j j , - , ,  -- nj 

and 

Fk~ Fk = id (36) 

where "o" symbolizes concatenation of mappings, and "id" is the identity 
mapping. 

From (35) it follows that the total hypermomentum of each inter- 
acting cell pair is conserved: 

m k + l  . k+t . , _ k (37) vJ -[-rrL(RkV)j=l' l ' tvJ-i"m(RkV)J 
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Case 1 

Case 2 S 
Case  3 J 
Case 4 

Conservat ion laws: 
nO + nO + = c o n s t  

+ = cons t  n k  - -  r~ k 

+ n~- = cons t  
i 

n j  

(V j ~ k) 

Fig. 6. Collision rule for a pair of interacting cells (x, v) and (x, v"  ). The partner cell's 
velocity v + =  Rkv is v with sign-reversed k th  component, k e {1 ..... d} is the number of the 
step and corresponds to the "interaction direction." Shown are all the possible nontrivial 
transitions, i.e., all other configurations remain unchanged. Note that each arrow (symbolizing 
a transition) has a partner that points in the reverse direction, which means that the pair rule 
is self-inverse. Also notice that case 1 is a "one-particle collision," i.e., one particle changes its 
velocity without changing its momentum, while cases 2, 3, and 4 are "two-particle collisions," 
where either particle retains its velocity, but not its momentum. The diagram at the bottom 
of the picture explains the various symbols; next to it, the conservation laws are indicated. 
The index j ( r  represents collectively all space directions orthogonal to the interaction 
direction k. 
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where 

rn~j(t, x) ~ v jnk j ( t ,  x) (38) 

is the hypermomentum of cell v at step k. Thus, our collision rule, being 
entirely composed of hypermomentum-conserving pair transitions, satisfies 
indeed the desired local conservation law (26). From Eq. (36), which states 
that each pair transformation rule is self-inverse, it is also clear that our 

t collision rule has the postulated reversibility property: The state n * * -  n** 
before the collision can be uniquely reconstructed from the state 
n * * - , * * '  ..a+l after the collision by simply applying the pair rules in reverse 
order, i.e., by computing 

k r k r  k + l  . k + l  
nvs= Jj[nv ,  n(RkV)$) (39) 

successively for k = d, d -  1,..., 1. 
We finally mention that the special form (33) of fkj is fixed by the 

additional requirement that as many bits as possible should be changed in 
an elementary pair interaction without violating the hypermomentum 
conservation. 

4. E Q U I L I B R I U M  S T A T I S T I C S  

Let us now investigate the statistical properties of our model. To this 
end, we write the dynamics of our CA in the form 

n**( t  + 2 , .  ) = Pn**( t ,  . ) (40) 

Here 

n**(t ,  .) =- (n**(t ,  x): Vx ~ X(t)) 

=- (n , j ( t ,  x): V(x, v, J)) (41) 

is the complete set of lattice state variables, and the operator F describes 
the evolution of the system over a time interval At = 2 according to our 
rules. We consider At=  2 rather than A t =  1, since the set X(t) of lattice 
points alternates with each timestep according to (7), so it would not make 
sense to compare lattice states at times t and t +  1 with each other. 
Furthermore, we assume periodic boundary conditions in all space direc- 
tions and restrict x to the periodicity volume, so the number of possible 
lattice states is finite, albeit very large. Let 

P(t,  n**(-)) := prob{n**(t,- ) = n .  ,(-)} (42) 
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which is the probability for the occurrence of lattice state n**(.) at time t 
in a statistical ensemble of automata. The evolution law for these 
probabilities is 

P(t + 2, _Pn**(. )) = P(t, n**(. )) (43) 

because P is one-to-one due to the reversibility of our dynamics. 
The "Gibbs distribution" pE(.) for our model is defined by 

1 
PC(n**(.)) = ~  W(n**(.)) 

W(n**(. ))=exp I -  ~j iisMj(n**(.)) 1 (44) 

z =  • w(.**(.)) 
n**(-) 

where the #s are arbitrary real parameters, and 

Mj(n**(.)) := ~ vjn,j(x) (45) 
x,u 

are the components of the total hypermomentum M ,  of the lattice state 
n**(-). As is well known, such a Gibbs distribution can be uniquely 
characterized by the fact that it maximizes the statistical entropy 
(Boltzmann's H-function) 

- ~ PE(n**(-)) lnPE(n**(.))=max (46) 
n**(.) 

under the constraint of fixed expectation values 

PE(n**(-)) Mj(n**(.)) = Mj (47) 
n**(.) 

Since our dynamics conserves the total hypermomentum, M, ( - )  has the 
property 

M s(Fn** (. ) ) = Mj(n**(- ) ) (48) 

from which it follows immediately that 

pE(pn**(. )) = pE(n**(. )) (49) 

This in turn means that pE(.) is a stationary solution of (43), i.e., P~(.) 
represents an equilibrium distribution. Its parameters #j are the intensive 
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thermodynamic quantities corresponding to the extensive dynamical 
invariants Ms. 

Of course, the Gibbs distributions pC(.) represents only a particular 
class of stationary distributions, and the question arises whether there are 
possibly other macroscopically relevant distributions. That would be the 
case, for instance, if there were additional extensive dynamical invariants 
independent of the Ms, which could then be included in the Gibbs 
formulas, giving rise to additional parameters analogous to the #j. Such a 
case has recently been discussed for the FHP and similar models by 
Zanetti (3~ (the Zanetti invariants do not appear in our model due to our 
alternating lattice). 

Since the hypermomentum (45) is additive over the cells (x, v), the 
Gibbs probability (44) splits into a product of cell probabilities: 

where 

pC(n**(")) = 1F-[ P~(n , , (x ) )  (50) 
x,v 

P,(n,) = prob {n**(t, x) = n,  } (51) 

(the probability for the occurrence of a given cell state n,  e S) is given by 

P,(n,) = W,(n,)/Z~ 

W , ( n , ) = e x p ( -  ~ ,tgvjnj) (52) 
J = 0  

z~= 2 W,(n,) 
n . ~ S  

Equation (50) means that there are no statistical correlations between 
different cells. 

Taking into account the restricted set (18) of possible values for n , ,  
we have 

with 

and 

P~(O,O)=l-p. P~(1, n)=p.Qv(n) 

Pv = prob{nvo = 1} = (nvo) 

(53) 

(54) 

(55) 

Q,(n)=pvprob{n,=nln,o= 1} (56) 

822/65/1-2-8 
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where "["  means "under the condition that." Here p, is the occupation 
probability of a cell with velocity v, while Q,(n) is the probability that a 
particle (no = 1) with velocity v has absolute momentum n. Using (52), one 
finds that the joint probability for the absolute momentum components 
(n~ ..... nd) of a particle splits into a product: 

d 

Q~(n) = I]  Q,j(nj)  (57) 
j = l  

where 

Q , i ( n j ) = p r o b { n , j = n j [ n , o =  1} (nj~ {0, 1}) (58) 

is the probability that the j th  absolute momentum component of a particle 
with velocity v has a given value nj. Thus, (57) states that the momentum 
components of a particle are not statistically correlated with each other. 

In (57), we have nj~ {0, 1} and thus 

Q,j(1) = avj, Q,j(O) = 1 - a , j  (59) 

with 

avj = prob{n~j = 1 [ n,o = 1 } = (n, j  In,o = 1 ) (60) 

As shown in Appendix B, evaluation of (52) yields 

d ), avj = f (# jv j )  (61) 

with 

1 
(62) 

f(~)  " -  1 + e r 

Equations (61) give the probabilities Pv and avj as functions of the 
set of distribution parameters, P , = ( P o  ..... #d). Different values of p ,  
correspond to different values of the spatial hypermomentum density q,  = 
(q0 ..... qa). The hypermomentum density is defined by 

where 

qj := 2 - a ~  vsp , s  (63) 
v 

PvJ := (nvj> (64) 
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The normalization factor 2 -d in (63) gives q, the desired meaning of 
"hypermomentum per unit volume" [note that each lattice point according 
to (7) "occupies" a volume of 2 d in d dimensions]. In particular, 

q =  (ql ..... qd) (65) 

is the momentum density, and 

P := qo (66) 

is the mass density. Note that p = 1 if the lattice is completely occupied. 
The p , j  can be expressed by Pv and avj" 

p ,o=p , ,  p , j = p , a  v (67) 

and Eqs. (63) become 

p = 2  d Z p , ,  q j=2  d Z v j p , a , j  (68) 
v v 

This set of equations, together with (61), can be used to solve for the #s 
in terms of the q j ,  the result inserted back into (61) then gives p, and aYi 
as functions of q, .  Although a closed-form solution of this nonlinear 
equation set is not possible, one can obtain an asymptotic solution for 
small [q[ (Appendix B). The result is 

l - p  (1-p)(1-2p) 
p , = p + 2  v . q + 2  [ (v .q )Z-q2 ]  + O(q3) 

2 - p (2 _p)2 p (69) 

1 vjqj ~ O(q3 ) 
(r.  = ~-~ ( 2 - p ) p  

where q := Iql ~ 1. 

5. H Y D R O D Y N A M I C S - - F I R S T  A P P R O X I M A T I O N  

Our knowledge of the equilibrium distribution now constitutes the 
starting point for the derivation of hydrodynamic equations. The 
hydrodynamic description of the CA is based on the assumption that a 
local[ near-equilibrium situation has established, where all local statistical 
quantities are entirely determined by a few local macroscopic order 
parameters, namely the components qj(t, x) of the local hypermomentum 
density. In particular, the local expectation values p,~= ( n , j )  and 
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p'vj= (H~vj) immediately before and after the collisions become local 
functionals of the hypermomentum density: 

P v J  = / ~ v d ( q , ,  Vq,, VVq,,...) (70) 

p',j = fi',j(q,, Vq,, VVq,,...) (71) 

where /3,j and /Y,j are certain continuously differentiable functions, which 
in the special case of exact equilibrium (V = 0) must reduce to 

with 

-' , = p , j ( q , )  ~ ,s (q , ,O,O, . . . )=pvs(q ,  0,0,...) ~o (72) 

p 0  0 ~0 
= P*~ P~ (73) 

Pvj-~ _ p,O = pO(q,) aOj(q,) 

where pO(q,) and 0 avJ(q,) are given by Eqs. (69) according to our 
equilibrium theory. The hydrodynamic equations we are looking for then 
are a closed set of local evolution equations for the order parameters q j: 

Otqs = qJ(q, ,  Vq,, VVq,,...) (74) 

As the qj are densities of conserved quantities, the right-hand side of (74) 
must be of the form 

(tJ(q,, Vq,,...)= -~VkQjk (q , ,  Vq,,...) 
k 

(75) 

where Qsk is the "hypermomentum flux density." 
In order to determine the local functionals PvJ, fi'vJ, and QJk, o n e  can 

formally expand them in Chapman-Enskog series of the form 
o (1 )  + o ( v )  + o ( v  2) + . . .  : 

0 Pvs = PvJ(q,) + rvj + O(V 2) with (76) 

t 0 t p , s=  pvj (q , )  + rvs + O(V z) with (77) 

V QJk = Q~ + Q sk + O( V~)with 

[the minus sign in (78) is just a convention], with 

O(V 2) := O(VVq,) + O ( V q , V q , )  + O(VVVq,) + -.- (79) 

r~j= ~ R,jD~(q,) VmqL 
Lm 

r'e = ~ R'jL,,,(q,) VmqL 
Lm 

QVk= - ~ TsLkm(q,) V,,,qr (78) 
Lm 
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This sort of expansion is justified if the characteristic length scale Ax of the 
hydrodynamic fields is sufficiently small, so that 

O(V k) = O((Ax)-k), ( k = 0 ,  1, 2,...) (80) 

One obtains a first approximation for the hydrodynamics by putting 
O . V 0 Q.tk,~Qjk, this gives O , q ; = Z k  kQJk(q,), which is time-reversal sym- 

metric and therefore cannot describe friction effects, such as viscosity. In 
order to capture friction effects, one must proceed to the second 
approximation QJk ~ Q~ + QVk, which leads to additional diffusive terms, 
where the quantities T j L k m  in (78) play the role of diffusion coefficients. 

The unknown terms in (76)-(78) must be determined from the 
requirement to be consistent with the discrete microdynamics of our CA. 
Taking the local expectation value of (21), we have 

[exp(c3t + v �9 V)] p,s=p'vj (81) 

where pvs= (n~s> and p'~j= </'/v J> refer to the state before and after the 
collision, respectively. The exponential in (81) symbolizes a space-time shift 
operator, with 

exp(c3t + v- V) = 1 + (~  + v. V) + �89 + v- V)2 + -.. (82) 

when the space-time derivatives of the operand are small. Applying 
d 2 .~vvs to (81), we get 

2 - ~ y  v j r ( a , + v . V ) +  { (a ,+v .V)2+  ...3 p , j = o  (83) 
v 

Here, we have used the definition (63) of qj and the fact that 

2 - a ~  v;p',j = 2 -ay  ", vsp,j (84) 
v v 

due to the local conservation law (26). We now make the formal ansatz 

~ t = O t l " l - O t 2 - ~ -  " ' ' ,  ~ t l  = O ( V ) ,  ~ t 2 =  O ( v 2 )  .... ( 8 5 )  

If we insert (85) and (76) into (83) and then collect terms of equal order 
of magnitude, respectively, we obtain 

O= 2 - d ~  vj(~,I + V" V) p O 
v 

0 2 0 + 2-~' y~ <, [a,~p,~ + l(a,~ + v- v) pv~ + (a,x + v. v) r ,A 
v 

+ O(V 3) (86) 
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Each order of magnitude must vanish separately; in particular, the O(V) 
terms give 

2 d ~  vj(Q,, + v'V) p,~ (87) 
v 

This can be written as 

with 

where the identity 

~t lq j+~V~Q~ (88) 
k 

QO := 2 - d ~  vjvkp,O (89) 
u 

2 - a Z  vjp~ = qj (90) 
u 

has been used. Thus, we have found that the first term in (78) is given by 
(89). Inserting (73) and (69) into (86), we obtain with the help of 
Appendix A 

1 - p  
gO = 2 2~pp q + O(q 3) (gO _ Q0k) 

(91) 

+4 q,q +o q3, Qj~- - 2  (-~-i-_p)Tp q2 6jk t z - p )  

Here we have introduced the notation 

g := (gl,..., gd), gk := Qok (92) 

for the mass components of the hypermomentum tensor QJk" Note that, 
according to our index convention, Qjk denotes the ordinary (nonhyper) 
momentum flux tensor. 

With the above formulas (91), we have determined the O(1) 
approximation for the flux, QJk = Q~ + O(V), and thus obtained the O(V) 
terms of the hydrodynamic equations, 

c~,p + V'g~ q) = O(V 2) 
(93) 

~,qJ + Z VkQ~ , q) = O(V2) 
k 
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Even if both the still unknown diffusive O(~ 72) terms in (93) and the O(q 3) 
terms in (91) were negligible, the resulting hydrodynamics would be 
anisotropic due to the term proportional to q~6j~ in (91). For the purpose 
of fluid-dynamics simulation, an at least approximately hydrodynamic 
behavior of the CA would of course be desirable. Note, however, that 
the coefficient of the anisotropic q~6jk term in (91) vanishes for p = 1/2; 
therefore the case p ~ 1/2 is of special interest. 

6. H Y D R O D Y N A M I C  L IM IT ING CASES 

The information we have collected about the hydrodynamic equations 
up to now enables us to investigate various important hydrodynamic 
limiting cases, even without explicit knowledge of the diffusive O(V 2) terms, 
which we will return to later. 

Let us first make the specific assumption that the hydrodynamic 
variables and their space-time scales have the following relative orders of 
magnitude: 

i O(e), = O(e) (94) ~t=O(~2), V= O(~2), p = ~ +  q 

with e~ 1. Here, 0 ,= O(52) means l/At= O(e z) where At is the smallest 
typical hydrodynamic time scale, etc. Then Eqs. (93) with (91) become, up 
to negligible terms, 

O~p+V" - ~ p  q =0  

(95) 

k -~ qjqk = 0 

The analog of (95) for a physical fluid is the compressible Euler equations 

O~p+V.q=O 
(96) 

where p(p) is the pressure (for simplicity we here assume that the tem- 
perature dependence is unimportant or has been eliminated), and q = pu, 
with u being the hydrodynamic velocity. Comparison of (95) with (96) 
shows that the automaton's hydrodynamics is not equivalent to that of a 
physical fluid even in this special isotropic limiting case, because the con- 
vection term O(qVq) in (95) has an "unphysical" p dependence, which is 
an effect arising from the absence of Galilei invariance in the automaton. 
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Another important limiting case is the "acoustic limit" 

O, = O(e), V = O(e), P = Po + O(e), q = O(e) (97) 

(here the mean density Po is arbitrary), which leads to the linear equations 
of sound 

1 - P 0 v . q = 0 ,  
~?zP+2 2 _ p 0  

Eliminating q, one gets 

((~2 --~- C2 V2)p = 0 

where the (isotropic) speed of sound is 

( 1 - - p o )  1/2 
c = \ 2  

For the special value Po = 1/2, we have 

1 
c3,q + ~ Vp = 0 (98) 

(99) 

(lOO) 

c :  1 / ~  (101) 

More interesting for the purpose of flow simulation, however, is the 
"inviscid incompressible" case with Po = 1/2, 

a, = O(e3), V = O(e2), p = 1 + O(e2), q = O(~) (102) 

which leads to 

V-q=O,  (0 ,+  s ~ q - v ) q + ~ v p = O  (lO3) 

These equations closely resemble the incompressible Euler equations for an 
ideal physical fluid: 

V . u = O ,  ( G + u . V ) u + V ~ = O  (104) 

where fb=p/po is the kinematic pressure. Equations (103) and (104) are 
easily seen to be equivalent; they can be transformed into each other with 

= 4p, u = ~-q (105) 

This means that in the inviscid incompressible case, the CA can simulate 
a physical fluid obeying the incompressible Euler equations, where 
Eqs. (105) define the observables "kinematic pressure" and "hydrodynamic 
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velocity" in the CA model. Note that the so-defined hydrodynamic velocity 
u ]has to be interpreted as a momentum convection velocity, and must not 
be confused with the mean velocity w of the CA particles, which is 

<~vvnvo> Z,  vp, ~ ,vp  ~ gO 2 ( l - p )  
- -  - -  ~ q (106) 

w= <Zvnvo> Z , P ,  EvP ~ P ( 2 - p ) p  

so that for p~l /2 ,  

w = ~ q =  ~u (107) 

The peculiar fact that u # w is typical of CAs, and can be explained as 
follows: In a physical fluid, Galilean invariance forces both macroscopic 
velocities to be the same. The CA model, however, does not contain any 
discrete equivalent of Galilei invariance; rather, the situation is loosely 
analogous to a copper wire in an electric circuit, where the mean velocity 
of the electrons is much smaller than the velocity of the information which 
they transport. In both cases, there is obviously a well-defined "rest" frame 
of reference, so there is no reason why the two macroscopic velocities 
should agree. The phenomenon that the mass and momentum convection 
velocities differ by a nontrivial factor also appears in the FHP, FCHC, and 
all other similar models; the proportionality factor (which in our special 
case is 2/3) in general depends on the mass density p; it is usually denoted 
by g(p) in the literature (often briefly called the "g-factor"), after the 
notation introduced by FHP in their pioneering paper (1) (e.g., g ~ 1/2 for 
small p in the FHP-I model(Z)). 

The idea to obtain the desired isotropic form (u" V)u of the convection 
term in the CA hydrodynamics by suitable choice of an adjustable statisti- 
cal parameter (the mean density P0 in our case) is not new, and has already 
been proposed and applied in other CA fluid models. (9'16'17"2~ Unfor- 
tunately, this trick does not work for the simple HPP model: Although one 
can eliminate the anisotropic terms in the HPP model by a suitable choice 
of Po, it is of not much use there because then also the isotropic part of the 
convective contribution [analogous to the qjqk term our Eq. (91)] vanishes 
simultaneously. 

For most hydrodynamic problems, the inviscid incompressible 
approximation is too much idealized, and one uses instead of (104) the 
incompressible Navier-Stokes equations, which contain an additional 
friction term: 

V .  u = O, (c~t ~- i i .  V ) u  -]- V r  = Y V2u (lo8) 

where v is the kinematic (shear) viscosity coefficient. An analogous set of 
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incompressible hydrodynamic equations with viscosity for our CA model is 
obtained in the limiting case 

~, = O(e2), V = O(e), p =  �89 q =  O(e) (109) 

Using (74), (75), (78), and (91), and dropping negligible terms, one finds 

V "q=O, (~t+ 8q'V) qj+ lVjp = 2 ZjklmVlVmqk (110) 
k l m  

where the viscosity tensor  Tjklm is defined by the function TjLkm(q.) intro- 
duced in (78), evaluated at p = 1/2 and q = 0. If one could show that Tjk~m 
were isotropic, then (110) would be equivalent to (108) by means of the 
transformation (105). Unluckily, though, our model does not have sym- 
metries that force Tjk~m to be isotropic; we therefore have to explicitly con- 
sider the second aproximation in order to get more detailed information 
about the friction terms in our model. 

7. THE S E C O N D - O R D E R  CORRECTION T E R M S  

For the next-higher-order approximation of the 
equations, we have to extract the O(V 2) terms from (86), obtaining 

2-aZvj[Otzp~189176 (111) 
u 

With (87), this becomes 

2 d ~  0 1 V ) r , s ] = 0  (112) �9 . V ) p , s  + ( O t l  - ~ - u  Vj[C3t2PvJ+ ~ v V ( ~ t  1 .~_ v 0 
v 

Using again (90), we find 

with 

where 

hydrodynamic 

~t2qJ+ Z V V~Qjk=0 (113) 
k 

QsV = 2 d~ vjvk(r,j+ �89 (114) 
v 

svj := (~,1 + v .  V)pv ~ (115) 
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The latter quantity can be explicitly computed, since pv ~ is a known 
fur, ction of q , ,  and O,lqL is given by (88) and (89), so that we obtain for 
(11.5) an expression of the form 

s,s = ~', SvjLm(q,) V m q L  (116) 
L m  

with well-defined coefficients SvjLm. The desired friction coefficients can 
then be written as 

T jLkm = - -2 -u  ~ V svk( RvJLm + �89 S,jLm) (117) 
v 

according to (76), (78), (114), and (116). 
The only open unknowns in (116) now are the RvgLm , which are 

defined as the coefficients of the O(V) term rvj in the series (76) for Pv.,- In 
order to gain more information about rvj , we expand Eq. (81) in powers 
of V, and obtain for the O(V) terms 

S,s = r'cs - -  r c j  ( 1 1 8 )  

where we have used (82), (85), (76), and (77). However, this new relation 
does not yet solve our problem to determine rvj, because we are now 
confronted with the additional unknowns r',s. 

One possibility to resolve this dilemma is to postulate a Boltzmann- 
type "collision equation," i.e., a local functional relation between PvJ and 
p',j of the form 

p',s= fvs (p**)  (119) 

with p * * -  (P,x: V(u, K)). The postulated relation (119)is a sort of macro- 
scopic generalization of the exactly valid microscopic collision equation 
(23). Forming the expectation value of the microscopic equation (23) and 
taking into account that nvj~ {0, l }, we find 

p , j =  n , j P ( f  **(n** 
'** 

! , Here, the sum extends over all possible local states n**, f**~ is the 
(well-defined!) inverse of the collision transformation f**: n** ~-+ n**, and 

P(n**) := prob{n**(t, x) = n** } (121) 

~s the probability for the occurrence of a given local state. Note that the 
above P(. ) contains information not only about single-bit probabilities 
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pva = (nvj),  but also about correlations between different local bits, e.g., 
between nvs and n.,c for (v, J) ~ (u, K). Therefore, the macroscopic collision 
equation (119) contains implicitly an assumption analogous to 
Boltzmann's Stosszahl-Ansatz, namely that all local correlations are deter- 
mined solely by the single-bit probabilities alone, so that P(-) becomes a 
welt-defined function of p**. The special structure of our equilibrium 
distribution now suggests the following ansatz: 

P(n**) = [I P,(n**) (122) 
u 

where Pv(n.) is defined by (53), (57), and (59), with 

P, := P,o, a,j  := P,JP,o (123) 

In other words, we neglect in our nonequilibrium distribution all those 
correlations which would vanish in the equilibrium case. This prescription 
makes P(.) a function of p**, which in turn, by way of (120), defines the 
desired macroscopic collision function fvJ( ' )  for (119). 

The o (g )  terms of the g expansion of (119) with (76) and (77) yield 

with 

r'j  = ~ A,j.,cr.l( (124) 
u K  

Avj.ze.-Of"(P~ 6v.ajK (125) 
8p.K 

Together, (118) and (124) constitute a set of linear equations for an equal 
number of unknowns (r.j  and r'vj), but the so-defined linear problem is 
degenerate because the collision equation (119) satisfies the conservation 
relation (84), which implies 

2 d ~  v s r ' a = 2 - ' ~  vjr,a (126) 
u u 

for J = 0 ,  1,..., d; therefore, 1 + d  of the equations (124) are linearly 
dependent of the others. On the other hand, the definition of q . ,  Eq. (63), 
and the identity (90) yield an additional set of 1 + d equations: 

2 d~vsr , v=O (127) 
u 

so that Eqs.(l l8),  (124), and (127) taken together should fix the 
unknowns rvj (and r'vj ) uniquely. Once rvj is known, we can insert it into 



CA Fluid Model wi th  Simple Rules 123 

(114) and thus obtain the desired explicit expression for the frictional part 
QjV of the hypermomentum flux. 

8. THE FRICTION COEFFICIENTS 

We will now explicitly calculate the friction coefficients TjLkm(q,) for 
p = 1/2 and q = 0 by actually carrying out the program just sketched. 

First, the macroscopic collision equation (119) has to be found. In 
analogy to the microscopic collision rule, (28) and (31), we make the 
ansatz 

p vS+ 1 k k k = f s ( P * * ,  ) (128) P(nkv), 

where k PvJ = ( l ' t v J )  refers to the kth partial step of the transformation. The 
microscopic version of the functions fjk(., .) is given by (33), which can 
also be written in algebraic form as 

k + f j ( n , ,  n +) = nj  + ztn~(n, ,  n ,  ) 

Anko(n,, n +) = (1 -- no)(n~ -- n ;  )-- (1 -- n~ )(no-- nk) 

An~(n, ,  n + ) = (no -- nk)(n~ -- n ]  ) -- nkn~ (129) 

And(n,, n + ) = E(1 - nk)(n~ -- n ;  ) + n k n ;  ] n+ 

-- [ ( 1 - - n ~ ) ( n o - - n k ) + n ~ n k ] n j  for j C k  

As can be easily verified, this is equivalent to (33) for all possible discrete 
values, n ,  e S  and n~-ES, with S given by (18). In order to obtain the 
macroscopic version o f f  ks(.,.) we take the expectation value of (129) and 
make use of the Boltzmann-type assumptions that: 

+ (i) n ,  and n ,  are uncorrelated. 

(ii) If no = 1, then nj and nk ( j C k )  are uncorrelated (for no=0,  we 
+ have always n j=  nk = 0); the same applies to n , .  

These assumptions (which would be strictly satisfied in the equilibrium 
case) imply 

( n j n ~  ) = ( n j ) ( n ~  ), ( n j n K n ~  ) = ( n j n K ) ( n [  ) . . . .  
(13o) 

( n j n k )  ( n j )  • (nk___._)) ( j ~ k ) ,  ... 
( n o )  ( n o )  ( n o )  

Additionally, we can use trivial relations like 

nonj=nj ,  ( n j ) 2 = n j  . . . .  (131) 
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+ which follow from the mere fact that n , ,  n ,  eS.  In this way, we get from 
(129) by averaging the desired transformation function for the expectation 
values pj  = (n j )  and p+ = (n + ): 

k /1 k f s ( p , , p + ) = p j +  p s ( p , , P + )  
A k Po(P,,  P~-) = (1 - Po)(Pg - P l )  - (1 - pff )(P0 - Pk) 

Ap~(p, ,  p ;  ) = ( P o -  Pk)(Pff -- P~ ) -- PkP~ (132) 
+ 

Ap~(p , ,  p+ ) = [(1 - Pk)(Pff - P~ ) + Pk P ;  ] ~fff 

- [ ( 1 - - p ; ) ( p O - - p k ) + p [ p k ]  p1 for j ~ k  
Po 

Since we are 
q ~ O, we set 

only interested in a linear approximation for p ~ 1/2 and 

k 0 g (133) PvJ = P v J  q- r v j  

0 1 (134) Pvj-= ~ 

and (69). Linearizing (132) for 

with 

0 1 
Pro = E, 

for p =  1/2 and q = 0  according to (73) 
k then gives small r ,s 

with 

(135) r k  + 1 k k r k . j  = L j ( r * * ,  (~k*)*) 

L~(r . ,  r + ) = r J + A r ~ ( r , ,  r . )  

1 + Arok(r., r + ) = --~(ro -- rg  ) + y(r k -- r k ) 

Ar~(r.,  r-~ ) = �88 + rg ) - �89  + r~ ) 
1 . + 1 + A r k ( r , , r , ) =  --~(ro--rg )+gOk- - rk  )-- ~(rj--ry ) 

( 1 3 6 )  

j ~ k  

then define the coefficients A , j . K  in the linearized collision equation (124). 
Fortunately, we need not directly calculate the A , j u x  and then solve 

the coupled set of equations (118), (124), and (127) for rvj, which would 

Equations (135) with (136), iterated according to the scheme 

d + 1 r 
r V J ~ J ' ~  " ' "  -") 'YVJ ~ r v J  

for 

(137) 
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be hopelessly complicated. The problem can be simplified by symmetry 
considerations. To this end, we set 

k k rvj= ~ (138) RvJLmVmqL 
Lm 

k with yet unknown coefficients RvJLm. The symmetry of our model with 
respect to reversal of the xh axis, where h e {1,..., d} is arbitrary, then 
implies 

F k  - -  k 2%~m( ( - 1 ) ~  v ~  ( R , , , J  - E - 1)*,~ 
Lm 

(139) 

where Rhv means v with sign-reversed hth component according to (29). 
Comparison of (138) with (139) yields the symmetry relation 

R~Rhv)JLm=(__l)6hc(__l)6hm k RvJLm (140) 

Now, an arbitrary v with components vie { • 1} can always be transformed 
into the vector 

1 :=  (1 , . . . ,1 )  (141)  

by applying an appropriate sequence of sign-reversal operators Rh. In this 
manner, we obtain by repeated application of (140) 

RvJL = VLt)mRkLm with RsL,,k :=RIjL,~k (142) 

Consequently, 

k 
r v J ~  E RkjLm I)L1)mVmqL 

Lm 

r 5 + r(~kv)j = ~ [1 __ ( -- 1) 6kL ( -- 1) 6k~] RkjLmVLVmVmqL 
Lm 

Substituting this into (135) with (136), we find 

where 

R k  + 1 ~ A R ~ L , ,  ' JLm ~ RJLm -'~ 

k ~_/?k _ R k  
Z~RkLm ~ 2''OLm ~kLrn 

AR~Lm=O for J # k  

if L ~ k ~ rn or L = k = m  

(143) 

(144) 

145) 
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and 
k 3 k k 

ZIRoL m = - - ~ R o L  m + RkLm 

k 
�9 ~ R k t  m = 0 

A R ) L m =  1 k 1 k - - ~ R o L  m + ~ R k L  m --  RkLm for 

if L # k = m  or L = k # m  

j # k  
(146) 

Iterating (144) with (145) and (146), we find, after some calculation 
, #a+ l  in terms of (Appendix C), the following expression for R j L m - ~ . . J L m  

1 . 

R J L  m ~ R j L  m. 

t 1 
Roo m = - ~Roo m + Rmom 

R~olm = R omm (~ lm 

R j o m = R m o m O j m + ( - 1 R o o m +  l R m o m ) ( l - c S j m )  (147) 

~Romm(~lm -~- ( R j l m  ~ 1 1 1 --  ~Rolm + ~Rllm) (~jmTml 

+ ( -  �88 + �89 

10 if j > k  
~sk := if j ~< k 

(148) 

where 

The side condition (127), with rvs= ~'~,Lm VLVmRjLmVmqL, yields 

R j L  m ~ VjVL1Q m ~ 0 
v 

from which we obtain, with the help of Appendix A, 

(149) 

Rom m = 0, Rmo m = 0 (150) 

(note that we use no implicit summation convention). Finally, we have to 
consider Eq. (118). In order to evaluate the term (115), we first note that, 
for p ~ 1/2, (73) and (69) give 

2 
o v - q +  ... P v o = P + ~  

o P 1 2 
pvj=-~ + ~ v . q +-~ vjqj + ...  

(151) 

while (88) and (91) yield 

0, ,p--  - ~ V . q +  --., O . q =  --�89 + -.. (152) 
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where 

�9 . - :=  O(( Ip- �89  + Iql) 2) (153) 

Therefore (115) becomes (the " +  -.-" is omitted from now on) 

Svo= ~v. Vp + 2 ( v . V ) q . v -  2V.q (154) 

svj = �89 V p  - �89 + �89 V ) q ' v  - �89 q + 2(v. V) qjvj 

Thus, the coefficients in (116) can be written in a form analogous to (142): 

(which is not surprising, 
with 

SvJLm = VLUmSjL m ( 1 5 5 )  

because the same symmetry arguments apply), 

Soom ~ 2 

SOlm = 2( 1 - -  (~Im) 

Sjom = 1(1 - (~jm) ( 1 5 6 )  

Sj,m -- �89 + 26 j , -  ~)lm) 

according to (154). Equation (118) now states that 

SjLm = R'JLm -- RjL, .  (157) 

Inserting (156), (147), and (150), and solving for R j L m ,  w e  find 

Room = 4 9 

Rolm = - - 2 ( 1  -- I~lm ) 

Rjom = - - 4 (  1 - -  (~jm) ( 1 5 8 )  

Rj,  m = - - l ( l  -]- 2 6 j , -  (~,m + I~jrn'~ml) 

The friction coefficients can then be computed as 

TjLkm = - - 2 - d  2 VjOL VkVm(RjL  m "+" 1S jLm)  
v 

according to (117), (142), and (155). Inserting 
consulting again Appendix A, we obtain 

Okm := ZOOkm = l (~kl (160) 

Tjtkm = ~(36jtbkm + fij6~k(1 + 7ink) -- 2(~flkm) ( 161 ) 

(159) 

(158) and (156), and 

822/65/1-2-9 
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for the mass diffusion tensor Dkm and the kinematic viscosity t e n s o r  Tjklm , 
respectively (the mass momentum cross diffusion coefficients Totkm and 
Tj0k,, vanish by symmetry). 

9. THE ANISOTROPY OF THE VISCOSITY 

It would be nice if our CA model could simulate the viscosity of a fluid 
correctly. Unfortunately, however, the viscosity tensor we have just derived 
is anisotropic. To see this explicitly, let us consider the simple example of 
a two-dimensional shear flow in the direction of the x~ axis, with 

ql = q~(t, x2),  q2 = 0 (162) 

The incompressible Navier-Stokes-type equations (108) then reduce to 

c3,q~ = v(V2) 2 ql with v = Tn22 (163) 

Here, v is the effective kinematic shear viscosity coefficient. For the slightly 
more general case that the flow direction makes an angle c~ with the x~ axis, 
Eq. (163) must be replaced with 

~?,ql = v'(Vl) 2 q'l with v '=  T~122 (164) 

where the primed quantities refer to the rotated coordinate system. They 
are related to their unprimed counterparts by 

x = R x ' ,  V = RV', q = R q '  (165) 

TJ'k'/'m'= E TJk/mRjf Rktc Rlv Rmm' ( 1 6 6 )  
jklm 

with the orthogonal matrix 

R=(R 1)T=Q--sineC~ cosSin~) 

Consequently, 

t 

v ' - T l 1 2 2  

--~ Tl122 COS 4 e ~ T2211 s i n  4 

-]- ( T l l l l  -1- T2222 - T1212 - T2121 - T1221 - T2112 ) c o s  2 e s i n  2 

(167) 

(168) 
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Now (161) yields 

Tl122 = T2211 = 1, THll = T2222 = 1 

T1212 ~- T2121 = 0, T1221 = 1  , T2112 = l  
(169) 

which inserted into (168) give 

v(~) -- v' = �89 4 ~ + sin 4 ~) (170) 

We see that the effective viscosity coefficient depends on the angle c~, with 
values in the range 

1 3~  v(ct) ~ l (171) 

where the maximum is at c~ = 0 and the minimum at ~ = 45 ~ (plus arbitrary 
multiples of 90 ~ respectively). This is, of course, in sharp contrast to a 
physical fluid, for which the viscosity would be angle-independent. 

10. C O M P U T E R  EXPERIMENTS 

There are several weak points in the our hydrodynamic theory. The 
first is the notorious implicit "ergodic hypothesis," which in our case is the 
assumption that p and q are the only macropically relevant variables. It is 
always difficult to rule out the possible appearance of additional "hidden 
variables" by strict mathematical arguments. (3~ The second weak point is 
the Boltzmann-type assumption about the absence of various correlations, 
which was needed for the explicit calculation of the friction coefficients. 

In order to test our theory, computer experiments are necessary. Some 
simulations with the two-dimensional version of our model have been 
performed meanwhile. (31) They seem to confirm the validity of the 
hydrodynamic description of the lattice gas. For  example, an attempt to 
simulate a van Karman vortex street produced the pictures shown in 
Figs. 7-9 (run on a Convex C2, with ~ 10 6 site updates per second). They 
prove that our CA model behaves at least qualitatively like a physical fluid. 
Furthermore, observation of the evolution of a shear flow in the xl direc- 
tion leads to an experimental value of v = 0.46 _+ 0.02 for the effective 
kinematic viscosity coefficient; this is quite close to the value v =  1/2 
predicted by our theory [-Eq. (170) with e = 0 ] .  Also, the measured value 
for the speed of sound, c = 0.58 + 0.02 for p = 1/2, agrees well with the 
theoretical prediction c = l /x /3  ~ 0.577 [Eq. (101)]. 
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Fig. 7. Vor tex  street  s imula ted  wi th  the 2D vers ion of our  model.  The wid th  of the obstacle  

is 800, and  the ins t ream veloci ty  is u = 0.1. The  m e a n  flow has  been sub t rac ted  in the picture.  

Shown is the flow pa t te rn  which has  evolved  from our  ini t ia l  setup after t = 60,000 t ime steps. 
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Fig. 9. The  same vor tex street  as in Fig. 7, at  t = 80,000. 



CA Fluid Model with Simple Rules 131 

11. C O N C L U S I O N S  

As we have seen, our model simulates nearly all terms of the 
Navier Stokes equations in two and three dimensions correctly, except that 
the viscosity in the model displays an unphysical anisotropy. This viscosity 
anisotropy is clearly a drawback as against the conventional FHP and 
FCHC models, in which the isotropy is enforced by built-in discrete sym- 
metries. However, our model is better than, say, the HPP model, which is 
technically much simpler than ours, since in our model the unphysical 
anisotropy of the convection term can be eliminated (by taking p ,~ 1/2), 
which is impossible with the HPP model. On the other hand, there are 
"conventional" models, such as those discussed in refs. 17, 20, and 21, in 
which the unhandiness imposed by the special discrete isotropy-enforcing 
symmetries is avoided by the same trick as in our model, namely to achieve 
the desired isotropy of the convection term by a suitable choice of an 
adjustable parameter. At first glance, these "quasi-isotropic" conventional 
models look more attractive than ours, because they are easy to visualize 
(see e.g., Fig. 1 in ref. 17), while our model is a little hard to explain, mainly 
because of its peculiar momentum definition, which (to the author's 
knowledge) has no analogy in the physical world. From the programmer's 
viewpoint, however, our model is very advantageous: Our rule (in 2D as 
well as 3D) is defined completely by Eqs. (33), which admittedly look ugly, 
but are easy to translate into computer code. The rules of comparable 
conventional models generally do not admit such a compact systematic 
algorithmic formulation (e.g., note that Fig. 1 in ref. 17 shows only a very 
small fraction of all possible nontrivial collision configurations). This 
applies to a much stronger extent to the 3D case (e.g., the "quasi-isotropic" 
3D model presented in ref. 20 has not been pursued any further by the 
authors, with good reason; another example of a non-FCHC 3D model can 
be found in ref. 32). 

In summary, one can say that for the case of pure Navier-Stokes flow 
(including things such as flow through porous media), our model is no 
satisfactory alternative to the conventional FHP and FCHP models, 
because of its anisotropic viscosity. However, for applications where addi- 
tional hydrodynamic variables appear (free boundaries, etc.), the conven- 
tional models might turn out as too specialized, since the introduction of 
additional variables into the model, especially when they are to obey addi- 
tional conservation laws, always blows up the complexity of the rules to a 
considerable extent (e.g., compare the rules of the magnetohydrodynamic 
CA presented in ref. 15 with those of the simple FHP model on which it is 
based). This poses a real problem especially in 3D, where the rules of the 
standard model (FCHC) are already very intricate in its basic version. 
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Here our model offers an interesting starting point, since our pair-inter- 
action method effectively reduces the huge number of possible collision 
configurations to a small number of possible configurations in each of the 
elementary pair interactions. 

A P P E N D I X  A. M O M E N T  RELATIONS 

One easily verifies by simple calculation the following "moment 
relations" for the set of discrete velocities v = (vl,.. . ,  Vd) with vj= _+1" 

2 a~l___v (~ (A1) 
v 

2 a ~ vj - v} ~) = 0 (A2) 
u 

,1(2) _ 6jk (A3) 2 - a  ~ v/vk =- -jk - 
v 

2 - d  ~ ViVkVz = ,,(3) = 0 (A4) ~jkl 
v 

2 - - d Z  VjVkI)lV m ( 4 )  __ - vjkt,, - 6~k6tm + 6jtg)km + 6jmCSkZ- 26jkt,, (A5) 
y 

where the Kronecker deltas 6jk and 6jkZm are = 1 if all indices take the same 
value, and =0  otherwise. Note that ~jklm and hence also ,,(4) is an ~jklm 
anisotropic tensor. 

A P P E N D I X  B. E Q U I L I B R I U M  F O R M U L A S  

Equations (61) arise as follows. From (52), we find 

1 - py = prob {no(t, x, v) = 0} 

= p,(o, 0) = w~(o, o)/zy 

= 1 / Z ,  

and 

z ~ =  w~(o, o ) + ~  w~(1, . )  
n 

d 1 

= l + e - " ~  l-I ~ e-"JvJ'J 
j = l  nj=O 

= 1 + e-P~ 1-[ (1 + e  -uj~j) 
J 

(B1) 

(B2) 
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Consequently, 

1 Z ~ -  1 
p ~ = l  

Z,  Z ,  

1 
1 + e~~ + e uses) 

= f  #o+ ~ l n f ( - # g v j )  
j = l  

(B3) 

with 

1 
f(~)  := l + e  ~- 

(B4) 

Thus we have shown the first of Eqs. (61). Furthermore, we have 

Qv(n) = prob{n(t, x, v) = n ] no(t, x, v) = 1 } 

pv(1, .) Wgl, n) 
p, Z , -  1 

d 

= H Q,g(n/) 
j = l  

with 

(BS) 

Qv/(ng) = wvs(n/) /z , :  

W,/(ng) = exp( - #j vsns) 
1 

zv+= ~ Wvi(n+) 
nj=O 

(B6) 

This leads to the second of Eqs. (61): 

1 
a,g = Qv(1 ) - 1 + exp(#svj) = f (# jv j )  (B7) 

In order to derive (69), we first expand (61) in Taylor series for 
[gl =:/~ ~ 1. Using for (62) the expansion formula 

f(~ + t/) = f ( ~ )  + f(~)  [f(~)  - 1 ] r/ 

+ f ( ~ ) [ f ( r  1][f(~.)--1]  t/2+ ... (B8) 
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we obtain from (61) 

with 

+ ~(~-1)@ 1~ ("'v)~ - ~ / T  + o(~ ~) 

(~vj= ~--#fJ %- o(# 3) 

Nasilowski 

(B9) 

(mo) 

~b := f ( # o -  dln  2) (B t l )  

Inserting this into (68), we find with the help of Appendix A, 

]~2  

p = 2  a~'p~=O+O(O-1)2~+O(#3 ) (B12) 
u 

#j qj= 2-aY~vjp,% = [r l ) -  p]-s O(# 3) (B13) 
Y 

This suggests the ansatz 

~b = p + ~q2 + p(q3) (B14) 

= flq %- O(q 3) ( B I 5 )  

which leads to 

and hence to (69). 

4(1 _p)2 4 
~ -  p ( 2 - p )  2' /~= p ( 2 - p )  (B16) 

A P P E N D I X  C. THE L INEARIZED COLLISION E Q U A T I O N  

In order to obtain Eqs. (147) from the recursion formulas (144)-(146), 
we consider four possible cases for the indices L and m in R~Lm: 

(i) L = 0 .  

(ii) O<L=-l<m. 
(iii) L=-l=m. 
(iv) L=-l>m. 
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(i) L = 0 .  Here, Eqs. (144)-(146) yield, for J = 0 :  

m m - - I  , , .  
Roo m = Roo m = R~o ~ - Roo m 

t _ _  I ; ~ d + l  d - -  / ~ m + l  1 m m 
Room = *'OOm = R o o m  - -  . . . . . .  OOm = - - 2 R o o m  -t- R m o  m 

for j < m: 

f o r  j - ~  m :  

R j J m  = . . .  1 _ = R j o  m = Rjo,. 

m . . .  _ _ R J + I  1 j 
R join = - -  jOm =- 5 R o o m  

Rio+2 . . . . .  R ;  - 
1 m 1 m 
~ R o o  m "q- ~ R m o  m 
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(c~) 

(C2)  

t ~ ] ~ d + l  ~ -  m . 
R m o m _ _  ~ m O m  . . .  - - - R m o , n =  . .  = R l m o m = -  R m o  m (C3)  

and for j >  m: 

R?om= . . . .  R)oo,= Rjom 
j - -  m-~  1 1 m 1 m (C4)  

Rjo,~ - . . . .  Rio.. = - ~ R o o  m + ~Rmo,~ 

r _ _  j ~ d + l  . = R J + I  1 j 
R join = ~ j O m  =- "" jOin = g R j o m  

Eliminating the intermediate values (with upper index 2 ..... d), we get 

/ 1 
R o o  m = - - ~ R o o  m AV R m o  m 

R ~ o  m = R m o  m ( C 5 )  

l 
R'jom = - l  R o o m  q- ~ R m o  m ( j C m )  

(ii) l < m .  Here we obtain, for J = 0 :  

l 1 __  
R o l  m . . . . .  R o l  m : R o l  m 

m _ _  _ _  1;? l+ 1 1 l 
R o l m -  . . . . . .  Olin = - -  ~ R o l m  -k- R~I m (C6)  

t _ _  ~ ) d +  1 ~ m + l  l ~ m  . .L ] ~ m  
R o l m  ~ -  * ~ O l m  ~ " " " ~ a ~ O l m  ~ - - 2 * ~ O l m  = a ~ m l m  

. . . . .  R ) , m - R j , m  

R l l m  . . . . .  p j + 1 1 j 
a . j l  m -~- ~ R o l  m 

m . .  _ _  / ~ / + 1  1 l 1 l 
R j l m  =- " - -  ~ j l m  = - - g R o t t o  + 5 R a m  

Rj tm  ~ R jd+ 1 = . l~m + 1 1 m 1 m 
" ' j lm = - ~ R o t m  q- 2 R m l m  

for j <  h 

(C7)  
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for j = h 

for l < j < m: 

R m  o /  R 1 - v 

; ~ d + l  ~ l ~ m + l  1 m 1 m 
R l l m  ~ ~'llm = "'" ~'llm = _ ~ R o l  m ~t_ g R m l  m 

(c8) 

j _ _ / ~ / + 1  1 1 1 l 
R j l m  - -  . . . .  * ' j lm = - - 4 R O l m  + 5-R llm 

(C9) 
m . _ _ R j + I  1 j 

J~jlm . . . .  ~' j lm = "~Rolm 

l ~ j l m ~ l ~ d + l  _ _  / ~ m + l  1 m 1 m 
~'jlm . . . . .  J ' j lm = - - 4 R O l m  q- 2 R m l m  

for j = in: 

l 1 _ _  
R m l  m . . . . .  R m l  m = R m l  m (CLO) 

r _ _  ~ d +  1 m . . _ _  ] ~ l +  1 1 ~ l  -1- 1 ~ l  
R m l m  = ~ l l m  ~ " " " ~- R m l m  = " - -  *~mlm ~ --4*~Olm ~ 2*~llm 

and for j > m :  

RJ l  m . . . . .  R)lm-.~. R j l m  

m ~ / ~ l + 1  1 l 1 l 
R j l m  . . . .  X'jlm = - - ~ R o l m  + 2 R / / m  (Cll) 

. . . .  ~ R o l  m + ~ R m l m  RjJm = . = R jr72 1 1 m 1 m 

R t  _ D d + l  . = R j + I  1 j 
jim = ~t'jlm = "" *'tim = 2 R o l m  

Elimination of the intermediate values then leads to 

R j l m  = ( 1 1 ' - - ~ R o l m + S R l l m ) ( ~ J l m  (l<m) (C12) 

(iii) l = m .  Here we have, for J = 0 :  

t / ~ d +  1 m 1 - -  
R o m m  ~ ~'Omm = . . . .  ROmm = . . . .  R o m m  = R o m m  

and for J _ = j > 0 :  

R j m m  ~- . . . .  R ) m m  ~ R j m m  ( C 1 3 )  

t d + I  m . . . .  = R j + I  1 j 
Rj , , ,m  - R j m m  = . . . .  -Rjmm jmm = ~ R o m m  

(both for j = m and j r m). Thus 

R ~ ) m m  = R o m  m 
(C14) 
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(iv) l > m .  This case differs from case (ii) only in that  the roles of 

l and  m must  be interchanged.  Therefore the result is 

e j l m  = ( -  1 1 R ' ~Rolm + ~ ,rib,) c~Jt ( / >  m) (C15) 

Taken  together, Eqs. (197), (204), (206), and  (207) const i tute  the set 

of Eqs. (147). 
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